Université du Québec à Rimouski (UQAR)

UQAR Students Use AWR Software for High-Efficiency PA Design for Small-Cell Base Station
AWR software and NI test equipment such as the spectrum analyzer and signal generator (including FlexRIO) were used from the circuit design stage all the way through to final system verification without changing the design and test environment. This made the NI PXIe system a one-stop design and test solution for this project!
Chan-Wang Park, Ph.D, Ing
Université du Québec à Rimouski (UQAR)

UQAR Students Use AWR Software for Unique High-Efficiency PA Design for LTE and MIMO Small-Cell Base Station

Company Profile

Université du Québec à Rimouski (UQAR) is part of Université du Québec, the biggest university network in Canada with over 86,000 students. With its attractive undergraduate and graduate research and teaching programs, UQAR welcomes some 6,500 students every year, more than 400 of whom are international students from over 35 countries. 

It has one of the province’s highest success rates and its graduates are widely sought after by employers who recognize the quality of their training. Students in the electrical engineering program receive a solid grounding in mathematics, physics, and electrical engineering fundamentals. Upper-level study provides the opportunity to choose from a large range of modules such as analog electronics, power electronics, control and automation, computer hardware, electromagnetics, microprocessor applications, power systems, signal processing, and telecommunications.


The Design Challenge

Mobile data consumption has exploded over the last decade and is predicted to grow 10x between 2013 and 2019. In 2013, traffic generated by mobile phones exceeded that generated by mobile PCs, tablets, and routers (Ericsson Mobility Report, Nov. 2013). To meet this demand, carriers are investing heavily in small-cell base stations. However, small-cell architecture has major implications for the wireless base station industry because the power amplifiers (PA) within these devices are a major source of power consumption.  The small-cell architecture requires medium power range (200 mW – 5 W for RF PA), flexible wideband transceivers, and distributed multiple-in/multiple-out (MIMO) or steerable antennas. Because wide-signal bandwidth drives baseband-power consumption in radio access, ultra high-speed signal converters (DACs and ADCs) are needed, as well as very high sampling frequencies (heavy processing). 

The UQAR design team of students led by Dr. Chan-Wang Park decided to develop a PA to be used with 5G MIMO multi-carrier signals. Because they wanted to be able to linearize the PA in the future and it was necessary to correct the nonlinearity of the PA by using a neural network predistortion linearizer, volterra, or polynomial predistortion linearizer, they chose AWR Design Environment™.

The Solution

The design team was able to achieve first-pass PA design success by using AWR Design Environment software (inclusive of Microwave Office and AXIEM), NI RF PXIe platform and Modelithics scalable high-frequency models. By programming with LabVIEW they were able to get fast test results, saving testing time. 

The test results were analyzed directly in the LabVIEW environment. Further, the team was able to develop a simplified solution to use in future telecommunication system standards such as the 5G MIMO system.

Using this design methodology and AWR Design Environment with Modelithics models, the design team was awarded second place in the IMS Student Power Amplifier Design Competition in IEEE International Microwave Symposium.

Why AWR Design Environment?

The design team chose AWR Design Environment for the design of this high-efficiency PA (HPA) for a 4G LTE wireless-communication base station not only because of its ability to correctly model and predict performance of the actual circuit but also because of its integration with other NI products and Modelithics high accuracy model libraries that greatly aided them in going faster from design all the way through to prototype and successful test.

To continue to read the full story, click to download the PDF document below...

Related customer stories

The Microwave Office intuitive environment, the interaction of all of its simulation engines, and its integration with third-party design tools has enabled us to develop a seamless, first-time-right design process for our RF/microwave amplifiers.
Ivan Boshnakov
Senior Principal Engineer
Aerial Facilities Limited
Read story
The seamless integration of the Microwave Office and VSS software gave me more meaningful results because I was able to simulate my power amplifier circuit design’s response to the EDGE/GSM modulated input signal with one design platform. I used Microwave Office and VSS from circuit concept all the way through to product completion. I was exceptionally happy with the technical quality of the ACPR and EVM simulation results.
TriQuint Design Engineer
TriQuint (now Qorvo)
Read story
We were unable to EM this entire structure using any other EM solver and turned to AWR to give it a try. The insights gained as unveiled by AXIEM opens up new vistas in mm-wave design for Mimix.
Dr. Simon Mahon
Director of MMIC Design
Mimix Broadband (now part of M/A Com)
Read story